Contents
- Bourne shell tokenization
- Label Expansion
- Typical attributes defined by most build rules
- Attributes common to all build rules
- Attributes common to all test rules (*_test)
- Attributes common to all binary rules (*_binary)
- Configurable attributes
- Implicit output targets
Bourne shell tokenization
Certain string attributes of some rules are split into multiple words according to the tokenization rules of the Bourne shell: unquoted spaces delimit separate words, and single- and double-quotes characters and backslashes are used to prevent tokenization. Those attributes that are subject to this tokenization are explicitly indicated as such in their definitions in this document. Attributes subject to “Make” variable expansion and Bourne shell tokenization are typically used for passing arbitrary options to compilers and other tools. Examples of such attributes arecc_library.copts and java_library.javacopts.
Together these substitutions allow a
single string variable to expand into a configuration-specific list
of option words.
Label expansion
Some string attributes of a very few rules are subject to label expansion: if those strings contain a valid label as a substring, such as//mypkg:target, and that label is a
declared prerequisite of the current rule, it is expanded into the
pathname of the file represented by the
target //mypkg:target.
Example attributes include genrule.cmd and
cc_binary.linkopts. The details may vary significantly in
each case, over such issues as: whether relative labels are
expanded; how labels that expand to multiple files are
treated, etc. Consult the rule attribute documentation for
specifics.
Typical attributes defined by most build rules
This section describes attributes that are defined by many build rules, but not all. AttributeDescriptiondata
List of labels; default is []
Files needed by this rule at runtime. May list file or rule targets. Generally
allows any target.
The default outputs and runfiles of targets in the data attribute
should appear in the *.runfiles area of any executable which is
output by or has a runtime dependency on this target. This may include data
files or binaries used when this target’s
srcs are executed. See the
data dependencies
section for more information about how to depend on and use data files.
New rules should define a data attribute if they process
inputs which might use other inputs at runtime. Rules’ implementation functions
must also populate the target’srunfiles from the outputs and runfiles of any
data attribute,
as well as runfiles from any dependency attribute which provides either
source code or runtime dependencies.
deps
List of labels; default is []
Dependencies for this target. Generally should only list rule targets. (Though
some rules permit files to be listed directly in deps, this
should be avoided when possible.)
Language-specific rules generally limit the listed targets to those with
specific providers.
The precise semantics of what it means for a target to depend on another using
deps are specific to the kind of rule, and the rule-specific
documentation goes into more detail. For rules which process source code,
deps generally specifies code dependencies used by the code in
srcs.
Most often, a deps dependency is used to allow one module to use
symbols defined in another module written in the same programming language and
separately compiled. Cross-language dependencies are also permitted in many
cases: For example, a java_library target may depend on C++ code
in a cc_library target, by listing the latter in the
deps attribute. See the definition of
dependencies
for more information.
licenses
List of strings; nonconfigurable;
default is ["none"]
A list of license-type strings to be used for this particular target.
This is part of a deprecated licensing API that Bazel no longer uses. Don’t
use this.
srcs
List of labels; default is []
Files processed or included by this rule. Generally lists files directly, but
may list rule targets (like filegroup or genrule) to
include their default outputs.
Language-specific rules often require that the listed files have particular
file extensions.
Attributes common to all build rules
This section describes attributes that are implicitly added to all build rules. AttributeDescriptionaspect_hints
List of labels; default is []
A list of arbitrary labels which is exposed to aspects (in
particular - aspects invoked by this rule’s reverse dependencies), but isn’t exposed to this rule’s
own implementation. Consult documentation for language-specific rule sets for details about what
effect a particular aspect hint would have.
You could think of an aspect hint as a richer alternative to a tag:
while a tag conveys only a boolean state (the tag is either present or absent in the
tags list), an aspect hint can convey arbitrary structured information in its
providers.
In practice, aspect hints are used for interoperability between different language-specific
rule sets. For example, imagine you have a mylang_binary target which needs to depend
on an otherlang_library target. The MyLang-specific logic needs some additional
information about the OtherLang target in order to use it, but otherlang_library
doesn’t provide this information because it knows nothing about MyLang. One solution might be for
the MyLang rule set to define a mylang_hint rule which can be used to encode that
additional information; the user can add the hint to their otherlang_library’s
aspect_hints, and mylang_binary can use an aspect to collect the
additional information from a MyLang-specific provider in the mylang_hint.
For a concrete example, see
swift_interop_hint
and swift_overlay
in rules_swift.
Best practices:
- Targets listed in
aspect_hintsshould be lightweight and minimal. - Language-specific logic should consider only aspect hints having providers relevant to that language, and should ignore any other aspect hints.
compatible_with
List of labels;
nonconfigurable; default is []
The list of environments this target can be built for, in addition to
default-supported environments.
This is part of Bazel’s constraint system, which lets users declare which
targets can and cannot depend on each other. For example, externally deployable
binaries shouldn’t depend on libraries with company-secret code. See
ConstraintSemantics for details.
deprecation
String; nonconfigurable; default is None
An explanatory warning message associated with this target.
Typically this is used to notify users that a target has become obsolete,
or has become superseded by another rule, is private to a package, or is
perhaps considered harmful for some reason. It is a good idea to include
some reference (like a webpage, a bug number or example migration CLs) so
that one can easily find out what changes are required to avoid the message.
If there is a new target that can be used as a drop in replacement, it is a
good idea to just migrate all users of the old target.
This attribute has no effect on the way things are built, but it
may affect a build tool’s diagnostic output. The build tool issues a
warning when a rule with a deprecation attribute is
depended upon by a target in another package.
Intra-package dependencies are exempt from this warning, so that,
for example, building the tests of a deprecated rule does not
encounter a warning.
If a deprecated target depends on another deprecated target, no warning
message is issued.
Once people have stopped using it, the target can be removed.
exec_compatible_with
List of labels;
nonconfigurable; default is []
A list of
constraint_values
that must be present in the execution platform of this target’s default exec
group. This is in addition to any constraints already set by the rule type.
Constraints are used to restrict the list of available execution platforms.
For more details, see
the description of
toolchain resolution.
and
exec groups
exec_group_compatible_with
Dictionary of strings to lists of labels;
nonconfigurable; default is {}
A dictionary of exec group names to lists of
constraint_values
that must be present in the execution platform for the given exec group. This
is in addition to any constraints already set on the exec group’s definition.
Constraints are used to restrict the list of available execution platforms.
For more details, see
the description of
toolchain resolution.
and
exec groups
exec_properties
Dictionary of strings; default is {}
A dictionary of strings that will be added to the exec_properties of a platform selected for this target. See exec_properties of the platform rule.
If a key is present in both the platform and target-level properties, the value will be taken from the target.
Keys can be prefixed with the name of an execution group followed by a . to apply them only to that particular exec group.
features
List of feature strings; default is []
A feature is string tag that can be enabled or disabled on a target. The
meaning of a feature depends on the rule itself.
This features attribute is combined with the package level features attribute. For example, if
the features [“a”, “b”] are enabled on the package level, and a target’s
features attribute contains [“-a”, “c”], the features enabled for the
rule will be “b” and “c”.
See example.
package_metadata
List of labels;
nonconfigurable; default is the package’s
default_package_metadata
A list of labels that are associated metadata about this target.
Typically, the labels are simple rules that return a provider of
constant values. Rules and aspects may use these labels to perform some
additional analysis on the build graph.
The canonical use case is that of
rules_license.
For that use case, package_metadata and
default_package_metadata is used to attach information
about a package’s licence or version to targets. An aspect applied
to a top-level binary can be used to gather those and produce
compliance reports.
restricted_to
List of labels;
nonconfigurable; default is []
The list of environments this target can be built for, instead of
default-supported environments.
This is part of Bazel’s constraint system. See
compatible_with
for details.
tags
List of strings; nonconfigurable;
default is []
Tags can be used on any rule. Tags on test and
test_suite rules are useful for categorizing the tests.
Tags on non-test targets are used to control sandboxed execution of
genrule s and
Starlark
actions, and for parsing by humans and/or external tools.
Bazel modifies the behavior of its sandboxing code if it finds the following
keywords in the tags attribute of any test or genrule
target, or the keys of execution_requirements for any Starlark
action.
-
no-sandboxkeyword results in the action or test never being sandboxed; it can still be cached or run remotely - useno-cacheorno-remoteto prevent either or both of those. -
no-cachekeyword results in the action or test never being cached (locally or remotely). Note: for the purposes of this tag, the disk cache is considered a local cache, whereas the HTTP and gRPC caches are considered remote. Other caches, such as Skyframe or the persistent action cache, are not affected. -
no-remote-cachekeyword results in the action or test never being cached remotely (but it may be cached locally; it may also be executed remotely). Note: for the purposes of this tag, the disk cache is considered a local cache, whereas the HTTP and gRPC caches are considered remote. Other caches, such as Skyframe or the persistent action cache, are not affected. If a combination of local disk cache and remote cache are used (combined cache), it’s treated as a remote cache and disabled entirely unless--incompatible_remote_results_ignore_diskis set in which case the local components will be used. -
no-remote-execkeyword results in the action or test never being executed remotely (but it may be cached remotely). -
no-remotekeyword prevents the action or test from being executed remotely or cached remotely. This is equivalent to using bothno-remote-cacheandno-remote-exec. -
no-remote-cache-uploadkeyword disables upload part of remote caching of a spawn. it does not disable remote execution. -
localkeyword precludes the action or test from being remotely cached, remotely executed, or run inside the sandbox. For genrules and tests, marking the rule with thelocal = Trueattribute has the same effect. -
requires-networkkeyword allows access to the external network from inside the sandbox. This tag only has an effect if sandboxing is enabled. -
block-networkkeyword blocks access to the external network from inside the sandbox. In this case, only communication with localhost is allowed. This tag only has an effect if sandboxing is enabled. -
requires-fakerootruns the test or action as uid and gid 0 (i.e., the root user). This is only supported on Linux. This tag takes precedence over the--sandbox_fake_usernamecommand-line option.
tags attribute of the test rule:
-
exclusivewill force the test to be run in the “exclusive” mode, ensuring that no other tests are running at the same time. Such tests will be executed in serial fashion after all build activity and non-exclusive tests have been completed. Remote execution is disabled for such tests because Bazel doesn’t have control over what’s running on a remote machine. -
exclusive-if-localwill force the test to be run in the “exclusive” mode if it is executed locally, but will run the test in parallel if it’s executed remotely. -
manualkeyword will exclude the target from expansion of target pattern wildcards (...,:*,:all, etc.) andtest_suiterules which do not list the test explicitly when computing the set of top-level targets to build/run for thebuild,test, andcoveragecommands. It does not affect target wildcard or test suite expansion in other contexts, including thequerycommand. Note thatmanualdoes not imply that a target should not be built/run automatically by continuous build/test systems. For example, it may be desirable to exclude a target frombazel test ...because it requires specific Bazel flags, but still have it included in properly-configured presubmit or continuous test runs. -
externalkeyword will force test to be unconditionally executed (regardless of--cache_test_resultsvalue).
target_compatible_with
List of labels; default is []
A list of
constraint_value s
that must be present in the target platform for this target to be considered
compatible. This is in addition to any constraints already set by the
rule type. If the target platform does not satisfy all listed constraints then
the target is considered incompatible. Incompatible targets are
skipped for building and testing when the target pattern is expanded
(e.g. //..., :all). When explicitly specified on the
command line, incompatible targets cause Bazel to print an error and cause a
build or test failure.
Targets that transitively depend on incompatible targets are themselves
considered incompatible. They are also skipped for building and testing.
An empty list (which is the default) signifies that the target is compatible
with all platforms.
All rules other than Workspace Rules support this
attribute.
For some rules this attribute has no effect. For example, specifying
target_compatible_with for a
cc_toolchain is not useful.
See the
Platforms
page for more information about incompatible target skipping.
testonly
Boolean; nonconfigurable; default is False
except for test and test suite targets
If True, only testonly targets (such as tests) can depend on this target.
Equivalently, a rule that is not testonly is not allowed to
depend on any rule that is testonly.
Tests ( *_test rules)
and test suites ( test_suite rules)
are testonly by default.
This attribute is intended to mean that the target should not be
contained in binaries that are released to production.
Because testonly is enforced at build time, not run time, and propagates
virally through the dependency tree, it should be applied judiciously. For
example, stubs and fakes that
are useful for unit tests may also be useful for integration tests
involving the same binaries that will be released to production, and
therefore should probably not be marked testonly. Conversely, rules that
are dangerous to even link in, perhaps because they unconditionally
override normal behavior, should definitely be marked testonly.
toolchains
List of labels;
nonconfigurable; default is []
The set of targets whose Make variables this target is
allowed to access. These targets are either instances of rules that provide
TemplateVariableInfo or special targets for toolchain types built into Bazel. These
include:
@bazel_tools//tools/cpp:toolchain_type@rules_java//toolchains:current_java_runtime
cc_toolchain or java_toolchain a
target will use.
visibility
List of labels;
nonconfigurable;
default varies
The visibility attribute controls whether the target can be
depended on by targets in other locations. See the documentation for
visibility.
For targets declared directly in a BUILD file or in legacy macros called from
a BUILD file, the default value is the package’s
default_visibility
if specified, or else ["//visibility:private"]. For targets
declared in one or more symbolic macros, the default value is always just
["//visibility:private"] (which makes it useable only within the
package containing the macro’s code).
Attributes common to all test rules (*_test)
This section describes attributes that are common to all test rules. AttributeDescriptionargs
List of strings; subject to
$(location) and
“Make variable” substitution, and
Bourne shell tokenization; default is []
Command line arguments that Bazel passes to the target when it is
executed with bazel test.
These arguments are passed before any --test_arg values
specified on the bazel test command line.
env
Dictionary of strings; values are subject to
$(location) and
“Make variable” substitution; default is {}
Specifies additional environment variables to set when the test is executed by
bazel test.
This attribute only applies to native rules, like cc_test,
py_test, and sh_test. It does not apply to
Starlark-defined test rules. For your own Starlark rules, you can add an “env”
attribute and use it to populate a
RunEnvironmentInfo
Provider.
TestEnvironment
Provider.
env_inherit
List of strings; default is []
Specifies additional environment variables to inherit from the
external environment when the test is executed by bazel test.
This attribute only applies to native rules, like cc_test, py_test,
and sh_test. It does not apply to Starlark-defined test rules.
size
String "enormous", "large", "medium", or
"small"; nonconfigurable;
default is "medium"
Specifies a test target’s “heaviness”: how much time/resources it needs to run.
Unit tests are considered “small”, integration tests “medium”, and end-to-end tests “large” or
“enormous”. Bazel uses the size to determine a default timeout, which can be overridden using the
timeout attribute. The timeout is for all tests in the BUILD target, not for each
individual test. When the test is run locally, the size is additionally used for
scheduling purposes: Bazel tries to respect --local_{ram,cpu}_resources and not
overwhelm the local machine by running lots of heavy tests at the same time.
Test sizes correspond to the following default timeouts and assumed peak local resource
usages:
SizeRAM (in MB)CPU (in CPU cores)Default timeoutsmall201short (1 minute)medium1001moderate (5 minutes)large3001long (15 minutes)enormous8001eternal (60 minutes)
The environment variable
TEST_SIZE will be set to
the value of this attribute when spawning the test.
timeout
String "short", "moderate", "long", or
"eternal"; nonconfigurable; default is derived
from the test’s size attribute
How long the test is expected to run before returning.
While a test’s size attribute controls resource estimation, a test’s
timeout may be set independently. If not explicitly specified, the
timeout is based on the test’s size. The test
timeout can be overridden with the --test_timeout flag, e.g. for
running under certain conditions which are known to be slow. Test timeout values
correspond to the following time periods:
Timeout ValueTime Periodshort1 minutemoderate5 minuteslong15 minuteseternal60 minutes
For times other than the above, the test timeout can be overridden with the
--test_timeout bazel flag, e.g. for manually running under
conditions which are known to be slow. The --test_timeout values
are in seconds. For example --test_timeout=120 will set the test
timeout to two minutes.
The environment variable
TEST_TIMEOUT will be set
to the test timeout (in seconds) when spawning the test.
flaky
Boolean; nonconfigurable;
default is False
Marks test as flaky.
If set, executes the test up to three times, marking it as failed only if it
fails each time. By default, this attribute is set to False and the test is
executed only once. Note, that use of this attribute is generally discouraged -
tests should pass reliably when their assertions are upheld.
shard_count
Non-negative integer less than or equal to 50; default is -1
Specifies the number of parallel shards
to use to run the test.
If set, this value will override any heuristics used to determine the number of
parallel shards with which to run the test. Note that for some test
rules, this parameter may be required to enable sharding
in the first place. Also see --test_sharding_strategy.
If test sharding is enabled, the environment variable TEST_TOTAL_SHARDS will be set to this value when spawning the test.
Sharding requires the test runner to support the test sharding protocol.
If it does not, then it will most likely run every test in every shard, which
is not what you want.
See
Test Sharding
in the Test Encyclopedia for details on sharding.
local
Boolean; nonconfigurable;
default is False
Forces the test to be run locally, without sandboxing.
Setting this to True is equivalent to providing “local” as a tag
( tags=["local"]).
Attributes common to all binary rules (*_binary)
This section describes attributes that are common to all binary rules. AttributeDescriptionargs
List of strings; subject to
$(location) and
“Make variable” substitution, and
Bourne shell tokenization;
nonconfigurable;
default is []
Command line arguments that Bazel will pass to the target when it is executed
either by the run command or as a test. These arguments are
passed before the ones that are specified on the bazel run or
bazel test command line.
NOTE: The arguments are not passed when you run the target
outside of Bazel (for example, by manually executing the binary in
bazel-bin/).
env
Dictionary of strings; values are subject to
$(location) and
“Make variable” substitution; default is {}
Specifies additional environment variables to set when the target is
executed by bazel run.
This attribute only applies to native rules, like cc_binary, py_binary,
and sh_binary. It does not apply to Starlark-defined executable rules. For your own
Starlark rules, you can add an “env” attribute and use it to populate a
RunEnvironmentInfo
Provider.
NOTE: The environment variables are not set when you run the target
outside of Bazel (for example, by manually executing the binary in
bazel-bin/).
output_licenses
List of strings; default is []
The licenses of the output files that this binary generates.
This is part of a deprecated licensing API that Bazel no longer uses. Don’t
use this.
Configurable attributes
Most attributes are “configurable”, meaning that their values may change when the target is built in different ways. Specifically, configurable attributes may vary based on the flags passed to the Bazel command line, or what downstream dependency is requesting the target. This can be used, for instance, to customize the target for multiple platforms or compilation modes. The following example declares different sources for different target architectures. Runningbazel build :multiplatform_lib --cpu x86
will build the target using x86_impl.cc, while substituting
--cpu arm will instead cause it to use arm_impl.cc.
select() function
chooses among different alternative values for a configurable attribute based
on which config_setting
or constraint_value
criteria the target’s configuration satisfies.
Bazel evaluates configurable attributes after processing macros and before
processing rules (technically, between the
loading and analysis phases).
Any processing before select() evaluation doesn’t know which
branch the select() chooses. Macros, for example, can’t change
their behavior based on the chosen branch, and bazel query can
only make conservative guesses about a target’s configurable dependencies. See
this FAQ
for more on using select() with rules and macros.
Attributes marked nonconfigurable in their documentation cannot
use this feature. Usually an attribute is nonconfigurable because Bazel
internally needs to know its value before it can determine how to resolve a
select().
See Configurable Build Attributes for a detailed overview.
Implicit output targets
Implicit outputs in C++ are deprecated. Please refrain from using it in other languages where possible. We don’t have a deprecation path yet but they will eventually be deprecated too. When you define a build rule in a BUILD file, you are explicitly declaring a new, named rule target in a package. Many build rule functions also implicitly entail one or more output file targets, whose contents and meaning are rule-specific. For example, when you explicitly declare ajava_binary(name='foo', ...) rule, you are also
implicitly declaring an output file
target foo_deploy.jar as a member of the same package.
(This particular target is a self-contained Java archive suitable
for deployment.)
Implicit output targets are first-class members of the global
target graph. Just like other targets, they are built on demand,
either when specified in the top-level built command, or when they
are necessary prerequisites for other build targets. They can be
referenced as dependencies in BUILD files, and can be observed in
the output of analysis tools such as bazel query.
For each kind of build rule, the rule’s documentation contains a
special section detailing the names and contents of any implicit
outputs entailed by a declaration of that kind of rule.
An important but somewhat subtle distinction between the
two namespaces used by the build system:
labels identify targets,
which may be rules or files, and file targets may be divided into
either source (or input) file targets and derived (or output) file
targets. These are the things you can mention in BUILD files,
build from the command-line, or examine using bazel query;
this is the target namespace. Each file target corresponds
to one actual file on disk (the “file system namespace”); each rule
target may correspond to zero, one or more actual files on disk.
There may be files on disk that have no corresponding target; for
example, .o object files produced during C++ compilation
cannot be referenced from within BUILD files or from the command line.
In this way, the build tool may hide certain implementation details of
how it does its job. This is explained more fully in
the BUILD Concept Reference.